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F O R M A T I O N  C O N D I T I O N S  F O R  B U B B L E  S U S P E N S I O N S  

U P O N  S H O C K - W A V E  L O A D I N G  O F  L I Q U I D S  

N.  A.  Stebnovski i  UDC 532.135:532.52 

The conditions of development o/bubble cavitation in liquid media upon shock-wave loading 
are found. It is s shown that, for the development of an unbounded cavitation, the bubbles 
should grow to certain critical sizes sufficient for their transition to a nonequilibrium state 
owing to the elastic energy transfeTTed by a rarefaction wave to a liquid sample (at the stage of 
unloading). ['n contrast to low-viscosity liquids, in high-viscosity ones (such as glycerin) these 
conditions cannot be satisfied for any really attainable parameters of shock waves. 

It is known from numerous experimental studies that the stage of fragmentation of a medium is 
preceded by the growth of cavitational bubbles or pores (in the case of scleronomous materials) upon dynamic 
failure of low-viscosity liquids [1-3], liquid-disperse and thixotropic media [4, 5], and some plastic metals  [6]. 
Nevertheless, as is shown in [4, 5], cavitational fracture is not always realizable even upon intense pulse loading 
in liquid media. For example, unlimited bubble growth is not observed during volume pulse expansion of a 
high-viscosity glycerin sample, and its failure occurs owing to the development of perturbations on the free 
surfaces. Along with this, when a gel sample that possesses viscoelastic propert ies fails upon pulse expansion, 
an unlimited cavitation develops in it and foamy cellular structures form and are then fragmented. In addition, 
as has already been noted, cavitation is observed in scleronomous materials, for example, in aluminum and 
copper [7]. 

In connection with the aforesaid, it seems expedient to determine the conditions under which bubble 
cavitation develops in condensed media and, thus, to separate a class of media that  are capable of cavitat ing 
under definite loading regimes. The present s tudy deals with the first stage of investigation of this problem, 
i.e., the determination of the conditions under which bubble cavitation develops in liquids due to shock-wave 
loading. The specific features of bubble growth from cavitational nuclei in liquids were considered in a number  
of publications. For instance. Se Din-Yu [8] studied analytically the growth of a spherical bubble in a viscous 
incompressible liquid, caused by a short-term pulse of negative ledge-shaped pressure. It is shown tha t  if, 
for example, a negative pressure equal to - 1 . 8 . 1 0 6  Pa is applied to water during 3 �9 10 -5 sec, a cavitat ional  
nucleus of radius R00 --- 10 -5 cm will grow to the size R = 10 -1 cm for this time. Person [9] found the 
conditions under which a single spherical gas-filled bubble grows in a viscous incompressible liquid under  the 
action of an instantaneously applied negative pressure jump in the form of an infinite ledge. The existence of 
tim upper and lower boundaries of negative threshold pressure, which are related to the cases of the infinite 
and zero viscosity of a liquid, respectively, was established. It was shown that  the gas in the bubble exerts 
a dominant effect on the process considered. Kedrinskii et al. [10] analyzed theoretically the cavitat ion 
excitation under the action of a negative pressure pulse of constant ampli tude within the framework of the 
model of an ideal incompressible fluid containing cavitational nuclei with allowance for the results of [8, 9] 
by referring to the dynamics of a single bubble. It was found that at small amplitudes of unloading one 
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can observe a strong dependence of the t ime for which the bubble reaches an appreciable  size (of the  order  

10 -2  cm) on R00. The  interval of R00 vahms tha t  admits  this is finite. For large amplitudes,  the noticeable 

sizes are reached by the bubbles almost  simultaneously over the entire spec t rum of/Zoo values. 
The  conditions of growth of cavitational nuclei up to noticeable sizes under  the action of a ledge of 

negat ive  pressure instantaneously applied to a medium were considered in [8-10]. However, in the problem 
of loading a liquid sample  by a shock wave (SW), the problem arises of the condit ions necessary for the 

unbounded  development of bubble cavitation in a liquid to which a pulse of negative pressure generated af ter  

tile SW front reaches a free surface is applied. In this case, as is known, the negative-pressure field in a liquid 

relaxes for a very short  t ime To: according to calculated da ta  [11], in tlm case of water  we have To ~ 10 - s  sec. 
1. We now consider the loading of a liquid sample of any viscosity by a short  SW ~ as to find the 

condit ions to which the wave parameters  should be  subject for the formation of an  unbounded cavi ta t ion in 

the  sample  at the stage of unloading. 
We assume tha t  a cylindrical or spherical liquid sample is loaded by a divergent coaxial SW. The  

character is t ic  size of  the sample is L = 2a0, where a0 is the initial radius of its cylindrical or spherical free 

surface (Fig. la) .  Let  a0o be the initial value of the volumetric concentration of cavitational nuclei in the 

med ium,  P1 be the gas pressure in the nuclei, Co be the velocity of sound in the liquid matrix,  # be the shear 
viscosity, (0 be the volumetric (second) viscosity, p be the density, 3' be the surface tension, and Pc~ be the 

hydros ta t ic  pressure in the liquid. In the initial state,  the liquid contains monodisperse  cavitational nuclei 

for a countable concentrat ion n, i.e., 

( 3v0 
 o0-- § l j  

Here  1/0 is the unit volume of the medium. Then,  the entire volume of tim sample can be divided into n cells 

of  characterist ic s ize / ,  so tha t  there is one nucleus at the center of each cell. Since in real conditions we have 
Roo ~< 10 -3 cm and a0o = 10-12-10 -6, the growth of a nucleus in a cell in the stretching-stress field to a 

ce r ta in  value of s0 can be regarded as the extension of a spherical bubble in a boundless  liquid, because 1 is 

several  orders of magni tude  greater  than Ro0. For example,  we have/R~o t ~ 104 for o~0o = 10 -12. 
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Tile mechanism of formation of a negative-pressure field in a medium can be presented as follows. A 
divergent SW propagates along the coordinate r of the spherical (r, 0, ~) or cylindrical (r, ~, z) coordinate 
system (depending on the geometry of the process). The  origins of these systems are aligned, respectively, 
with the center or the axis of symmetry  of the sample. After the SW front reaches the free surface of the 

sample r =  ao (Fig. la),  its radial tension begins [a(t) > a0], and the rarefaction wave (RW) reflected from 
the free surface converges to the center of the system. The dashed curves in Fig. lb  show the profiles of tile 
divergent SW and of the SW convergent to the center of symmetry.  If there were no cavitational nuclei in 
the liquid, a field of negative pressure/5~ would be generated behind the RW front (Fig. lb) and a portion 
of SW eImrgy would be converted to the elastic energy of the radially stretched medium. However, since we 
always have a0o > 0 in the liquid for tt 50 + Pll ~> Poe -t- 2~f/R00, the elastic energy is converted to the work 
of expansion of the cavitational nuclei, and the pressure/5o relaxes with a certain time constant To. 

Following to [12], the pressure 150 in a RW can be presented in the form of a superposition 

P~ r) = P+(r +, r) + P - ( r , ,  r). (1) 

Here P+ (r +, r) = f+ (r +, 7")U(r-r +) is the pressure in the SW divergent from the axis (or center) of symmetry 
of the sample; f+(r+,r) = P+(r +) for r =  r +, f+(r+,r) <~ P+(r +) for r < r +, U ( r - r  +) = 1 for r ~< r +, and 
U(r - r + )  = 0 f o r  r > r + and P + ( r  +) is the pressure in the SW front. Similarly, we present an imaginary 
SW that  converges to the center (or axis) of symmetry of the sample: 

P -  ( r : ,  r) = y - ( r : ,  r) u ( r  - r : ) ,  

where i f - (r2.r) t  = lP . - ( r . ) [  for ' , '=  7"., [ f - ( r . , r ) i  ~< [ P - ( r . ) l  for r > r2-; U ( r -  r . )  = 1 for r >~ 7"2, and 
U(r - r2) = 0 for r < r2;  P2-(r-2) is the pressure in the front of the imaginary SW, and r + and r2 are the 
coordinates of the fronts of the divergent and imaginary SW, respectively. 

Since P +  (r +, r = as (t)) <~ P + ( r + ) ,  with allowance for the condition on the free surface of the sample 

P+(r +, al(t)) + P - ( r . ,  al(t)) = 0 

the quantities P+  and P -  at the point r .  ~< r = 'f ~ r + can be expressed in terms of their pressure-drop 

gradients behind the front: 

+) = P+(r, +, + / P+(r +, VP+(r+,r) dr, 

~:(t) 

P- ( r , ,  i:) = -P+(r  +, al (t)) + / VP-(r2 ,  r) dr. 

a I ( t )  

Substi tut ing these expressions into (1), we obtain a pressure distribution function along r in the RW 

= -  [ k OP+(r+'r)or + OP-('r:,r)or .)dr' (2) 

~l(t) 
that  holds for the cylindrical and spherical symmetries. Therefore,  after the front of the imaginary SW arrives 

at the i th  ceil, a pressure field 

the vicinity of a cavitational nucleus, where Pt ( R ) =(Pcr + 2~/ / Roo ) b - 3k, b = R/ Roo, k is is generated in 

the polytropic exponent  of the gas in the bubble, and/5/(r i ,  t) = -/bi~ is the negative pressure which 
% 

relaxes by the law f( t)  owing to bubble expansion. The growth of a cavitational bubble from a nucleus under 

the action of cri is described by the Rayleigh-Lamb equation [13]: 

3/~2 4p /~  ai R / ) + ~  + . . . .  , R = R 0 0  and / ~ = 0  for t = 0 .  (3) 
p R p 
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We distinguish two stages of expansion of a cavitational bubble. On the time scale {, which is reckoned 
from the moment  of generation of a divergent SW, the first stage begins at { -- {1 [ttm time when the 
i th cell reaches the field ~ (Fig. 2)] and terminates at { -- t-2 which corresponds to relaxation of/5i  to 
I/5"1 = P~ + 2~//Ro - P1, the value at which the bubble radius increases up to R0, which corresponds to the 
maximum expansion rate/~0.  At this moment,  the elastic energy of the stretching-stress field is converted to 
the kinetic energy of tile liquid around the bubble in the i th  cell and the work to overcome the hydrostatic 
counterpressure, the surface energy of the bubble, and the thermal energy which is due to the viscosity of the 
liquid. At the moment  {2, the second stage of bubble expansion, which occurs in the mode of inertia owing 
to the stored kinetic energy of a liquid, defined by the bubble-wall velocity/~0, begins and it terminates at 

the moment {3, when the maximum size R -- R. ,  i .e. , /~.  -- 0, is at tained.  
For convenience, we redenote the t ime scale as follows (Fig. 2): {1 = t -- 0 is the beginning of the 

process of extension of a cavitational nucleus, {2 --- t = T1 is the onset of the stage of bubble extension 
by inertia, and {3 ---- t --- T1 + T2 is the terminat ion of bubble expansion owing to the elastic energy of the 
stretching-stress field in a liquid cell. Then,  the negative pressure in the i th  cell can be presented in the form 

~hi(t) = Pi~ exp (- t /To),  t5o < 0, (4) 

where/50 is determined by expression (2). Since To is very small and, hence, the displacements of the fronts 
of the loading and imaginary SW are insignificant for this time, we assume that the vahm of/5~ remains 
constant during relaxat ion of the pressure/5/(t) .  Substi tut ing (4) into (3), multiplying tim latter by 4rrR2/!t, 

and integrating over t from 0 to Th we obtain 

T1 

-4 . /5  ~ ( -  at = 2.pn0 R0 + 
0 
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Here ~ < 0 and b0 = Ro/Roo. With allowance for ai = 0 at  t = T1, we have 

T, = To In [P~ 
P (1 - b] k) + 27(1 - boab /Ro"  

Equality (5) determines the energy balance in the ith cell: the expression on the left side of the equality is 

the elastic R~,V energy E0 spent for bubble growth, the first te rm on the right side is the gain in the kinetic 
energy E1 of a liquid owing to the increase in the bubble-expansion rate to the value of/~02, the second term 
on the right side is the work of bubble extension in the field of hydrostatic counter pressure/[72, the third 
term is the gain in the free (surface) energy E3, and the fourth term is the dissipation of energy E4 because 
of the shear  viscosity of the liquid. 

It  has already been mentioned that ,  according to calculation data  [11], the negative pressure in water 
relaxes owing to the growth of cavitational bubbles for a t ime less than 10 -7 sec; under these conditions the 
bubble fails to reach an appreciable size (the order 10 -2 cm). According to data of [1@ the stretching stress 
in high-viscosity glycerin relaxes for approximately t0 -7 sec; here the cavitational nuclei also have no time 
to reach a noticeable size. Therefore, in (5) the increments of the terms E2 and E3 during T1 can be ignored. 
With allowance for the fact that al ~- a0 for t = T1, with E0 replaced by ~ in expressions (2) this relation 
can be wr i t ten  in the form 

§ TI 7'1 

" [I o,. + o. ]<,r .'S,e.-<p(- '" pRoR o + 8# R R  2 dt. (6) 

ao 0 0 

We now es t imate  the degxee of bubble expansion at the stage where t > T1, i.e., in the inertial mode, owing 
to the s tored kinetic energy El.  

2. We integrate Eq. (3) from Ro to R.  (the maximum radius attainable by the bubble owing to 
the stored kinetic energy) on the time interval (Tb T2), which corresponds to the inertial stage of bubble 
expansion, with allowance for ai = -Poo - 27R -1 + (Pet + 27R~l)b  -ak +/5i0 exp ( - t /To) , /~  =/~0 for t = T1 
and/~  = / ~ .  = 0 for t = :/"2. Resolving the resulting relation with respect to pRafr~, we substitute it into the 
right side of (6). As a result, we have a condition under which a cavitational bubble grows from R00 to R.  
owing to the elastic energy of the stretching-stress field in the i th  cell of the sample: 

,~ T~ 

ao 0 

/> [P~(b03. - 1) - + >ff (l _boak-a) _ apg f b%exp (_  )dt] (k + 1)b  k 
T1 

T~ 

30' (b2. _ 1) + 12# / b[~ 2 dr. (7) 

0 

Here b0. = R. /Ro.  Let us simplify the left side of this inequality by specifying the profile of a wave that  loads 
the sample as a function P+(t) = P+ exp (-- t /T) ,  where r is a pressure-drop time constant at a fixed point of 
the medium. Since, according to numerous experimental data,  the development of bubble cavitation in liquid 
nmdia is excited by shock-loaded wave with an amplitude that  does not generally exceed 109 Pa, one can 
consider tha t  the velocity of these SW equals the velocity of sound in the loaded liquid Co. With allowance for 
this, after the replacement t = (r + - r i ) / C o ,  with the front coordinate r + fixed, the space pressure distribution 
behind the SW front can be presented in the form P+(r +, 'ri) = P + ( r  +) exp { - ( r  + - r i ) / [ r ( r i )Co]} ;  whence 

+ p . + ( r , + )  r,+ - 

Or = r(ri)Co exp [ r-~-(r/-~0J" (8) 
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The pressure on the free surface is always atmospheric; as a result, the negative pressure in the medium 
behind the RW front can be formed only for r < a0 (see Fig. 1). Therefore,  we determine the bubble-growth 

condition in a cell located at a certain small distance from the free surface 6, so that 5~co << 1. The essence 
of this approach consists of the fact that  if the bubble-growth condition holds in a cell with the coordinate 
ri = a0 - 6, it will hold for rj < ri as well. Wi th  allowance for this, expression (8) for ri = ao - 5 (at the 
moment of arrival of the SW front at this point ,  i.e., for r + = a0 + 6) can be rewritten as follows: 

OP+ P+(r+) exp [ 26 
-  -(GCo] (9) Or r ( r i ) C o  ~ 

In the process of convergence of the imaginary SW to the center of symmetry  of the sample, the surface 
of its front decreases; therefore, it is clear tha t  the amplitude at least does not decrease. Therefore, we 
have lOP-~Or[ >~ [OP+/Or] at an equal dis tance from the sources of waves. Consequently, one can write an 
inequality tha t  takes the form 

c o - 6  

OP+(r+, r) OP-(r:,r) {1 - e x p  [ 6 
CoT(~d 

041 

with account for (8) and (9) and the approximation r(ao + 6) ~ r (ao  - 6) atxd after integration over r from 
a0 to a0 - 6. Using (10), the bubble-growth condition (7) can be transformed to the inequality 

TI 

3P+(r+){1 -  eXP[Col.(@.ob_ 6)] } / b 2 ~ e x p ( _  t ) 3 _ 1) Poc + 23'Roo ! 
(k + t)b o (1- bo, 3~-a) 

0 

T~ T2 

33' ~b2 _ 1) + 12# / bb 2 dt. (I1) -zP~ 0, 
T~ 0 

Thns, the fulfillment of condition (11) ensures bubble growth in the volume 0 < r ~< a0 - fi 
of a liquid sample of any shear viscosity. The  current values of b and b in (11) can be calculated 
numerically, by solving Eq. (3) on the t ime interval (0, T l). The  negative-pressure relaxation time 

To = T0(K0, _boo, Ka(ao), ~o, ~l(a0)) is determined from relation (5.5) of [15], which was derived in terms 
of the macrorheological model of cavitating liquids. Here / too  and tt0 are the dynamic and static moduli of 
volumetric elasticity of a pure liquid and Ka(aO) is the modulus of volumetric elasticity of a bubble snspen- 
sion, which is calculated from the relation derived in [15]. The  effective volumetric viscosity of a cavitating 
liquid ~t(a0) should be found, because the known formula (1 = 4/z/(3a0) [16] holds only for large a0. If 
a0 --* 0, then (1 ~ oc, wtmreas there should be ~t --* ~0 as a0 --* 0. To eliminate the singularity in this 
formula as a0 ---* 0, we stlould construct the dependence ~1(#, a0) with allowance for the volumetric elasticity 
of the liquid component .  

3. If a real liquid undergoes volumetric  expansion so that  the Deborah number De = To/At  >> 1, 
where A~ is the characteristic time of increase of the stretching-stress amplitude, the strain of the medium 
is first determined only by the volumetric s t ra in  of the liquid component.  After that,  the cavitational nuclei 
grow and, consequently, the stretching stresses begin to relax, i.e., the increase in the volume of the medium 
is determined only by bubble growth. W i t h  allowance for this, we construct a dependence of ~l on the 
volumetric-strain ra te  of a pure liquid ~vo and that  of the medium ~VB owing to bubble growth. The energy- 
dissipation rate in the volume 1/~ of a homogeneous liquid Do and in a monodisperse bubble suspension that 
expands only owing to bubble gTowth DB is representable in the form [16] 

V~ -2 Do = o~0~v o, DB = 16zr#R/%2N. (12) 

Here N is the number  of bubbles in a medium of volume V ~ Then, in a homogeneous medium rheologically 
equivalent to the medium considered, the energy-dissipation rate can be presented as follows: 
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D = V~162 D = Do + DB, gv = it,'o + ~VB. (13) 

Let us determine the volumetric-strain rate of a pure liquid 2y" and tha t  of a bubble suspension 
~VB in which the change in the volume of the medium is determined only by bubble growth. Since the 
volume before and after deformation is determined, respectively, by the expressions V ~ = Vo + 47rR3oN/3 
and V = Vo + 41rR3N/3, with allowance for n = N / V  ~ the countable bubble concentration, we have 

dt'V-V ~ d( V ~ : d(4~R3,,, aoo) =3ao ~ ~VB (14) 
d - t k ~ ]  ~ \ a ~  V ~ ] d-t\ 3 R" 

We determine the volumetric strain of the liquid component as follows. In the case where De >> 1, the 
rheological equation of state of a bubbly suspension [15] becomes a simple relation av  = K~(ao)av, which 
can be written in the form a0 = a00 for K~(aoo) ~ h ~  with allowance for ayo = K~ayo; whence 

~vo = a v o K ~  1. (15) 
To find ~ryo, we use the pressure expression at a fixed point in the medium ri through which a SW passes: 
P+(ri,  t) = P+(r~)exp ( - t r  -1 (ri)). We consider that  the SW front increases for Atf, which is of the order of 
10-7-10 -6 sec according to experimental data. Then, at the moment when the imaginary SW arrives at the 
point ri, its profile can be presented in the form 

P-(r i ,  [) = { P . ( a o  - 5)[U([) - U([ - Atf)]([/Atf)  + P . (ao  - 5 ) U ( t -  Atf)~ 
k ) 

x exp [ - tU( t  - Atf)/T(ao -- 5)]. (16) 

Here P,- < 0; t is the time from the moment of arrival of the ima~nary SW at the point r i : a 0 - -  5 and 
U( t )  = 0 and 1, respectively, for [ < 0 and t ~> 0 and U ( t -  Atf) = 0 and 1 for of t ~< Atf and t > Atf, 
respectively. The character of pressure increase in the front of the divergent i does not exert an effect on the 
formation of a negative pressure in the P+(ri ,  t ) t h  cell; therefore, for ri - a0 - 6, one can write 

P+(ri ,  f) = P+(ao - 6) exp [-(25Co I + t) /v(ri)].  (17) 

Since 5/ao << 1, we have T(ao + 5) ~- v(ao - 6) ~- "r. With allowance for (16) and (17), the determining 
negative pressure in the i th cell takes the form 

(-25/Co-t [ 
P+(ao - 6) exp \ 7 ) - P . ( a o + 5 )  0 ~  t <  Atf, 

Atf '  
P(ri, t ) = ( -25/Co - i 

P + ( a o - 5 ) e x p  -~ ) - P . ( a o  + 5)exp ( -  ~,], t >  /ktf. 

(18) 

Then, substituting irv.(ri, [) = -d[~(ri, t ) / d t ,  where/5(ri ,  t )  , is determined from (18), into (15), we have 

P + ( a o - 5 )  25Co l + t ~  , P . ( a o + 5 )  
.( T - - J * "  - -jSi i -  ' o a t f , exp 

~vo(r i , t )= [p .+(ao_5)exp(  25 ~ _ p . ( a o _ 5 ) l e x p !  ~/7) ' f > A t f .  (19) 
L \ CoT / J B-~ T 

Finally, substituting expressions (12), (14), and (19) into (13), with allowance for [P+(a0 + 5 ) / P .  (ao-6)] ~-- 1 
and A t f / r  << 1 and, therefore, for t ~ Atf exp ([~_-t) ~ 1, we obtain 

r 4aolz 
Cx = V~ + o)2/V~ + 3(o~o + 0 - 1 )  2, 0 ~< ~ ~< ,%-, 

4ao# (20) 
~o -t- ~-1)2 '  t > Atf, 

V~ + fff)2/Vo 3(no + 

where O = 3aoKooAt fR/R and �9 = 3a0h.'oor/~R -1 exp (tw -1) As a0 --+ 0, according to (20) we 
P.+(ao - 6) P.+(ao - -  5)[exp (--25/(TCo)) - 1]" 

have r --* ~0, whereas, for O >> 1 at the stage 0 ~ t ~ Atf or �9 >> 1 at the stage t > Atf, we have 
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~1 --~ 4#/(3a0),  which corresponds to the known formula [16] that determines the volumetric viscosity of a 
concentrated bubble suspension. The resulting expression (20) allows us to determine ~1 at the initial stage 
of cavitational-nucleus growth in the mode of pulse expansion of a cavitating liquid and, thus, completely 
determines the macrorheological equation of state [15]. 

4. At the stage where t > T1, the counteraction of the hydrostatic pressure Poo to bubble expansion 
is partially compensated, according to (11), by the "residual" negative pressure and the gas pressure in the 
bubble. Therefore, to estimate from above the elastic-energy store (transferred by the RW to the liquid) 
necessary for bubble growth to the size R., the effect of/5o exp ( - t /To)  and P1 (R) at t > T1 can be ignored, 
and Eq. (11) can be reduced to the form 

T1 

3P+(ao + f i ) { 1 - e x p  [Co'r(-~--~-5)]} / b 2 b  exp ( - ~----~) dt 

0 TI 

3~/ (bo2. - 1) + 1 2 # / b b  2 dt. (21) - 1 )  + 

0 

In the case of low-viscosity liquids (# ~ 0), from (21) we obtain the following condition for bubble 
growth to the size R.: 

T1 
- 5  2" ~--~)dt Poo(b3o. 1) 3"7 3 P + ( a o + 5 ) { 1 - e X P [ C o T . ( a o _ 5 ) ] } / b b e x p  ( -  /> - + ~ ( b 2 . - 1 ) .  (22) 

0 

From (18), with allowance for P + ( a o -  5) ~- P , ( a o  + 5) we have /5(ri,T~) ~- P + ( r / ) [ 1 -  
exp (-25/(Cov))] exp (-T1/r) ;  since ai(Tl) = 0, we have (Pcc + 2~ffRoo)bo 3k - P o r  - 2~//Ro + P+(ri)[1 - 
exp(-25v-1/Co)]  exp ( - T I / r )  = 0. Therefore, since we usually have v > 10 -6 sec and T1 is of the same order 
as To, one can calculate exp ( - T l / r )  ~ I and R0 from the expression 

(P~ + 27/Roo)bo 3k -- P~ - 27/R0 + P+(ri) = 0, (23) 

by setting the values of R00 and P+(ri) and the coordinate ri = ao - 5. 
In tile case of high-viscosity liquids, ignoring the effect of the surface tension and hydrostatic pressure, 

one can write Eq. (3) for t/> TI in the form R/~ + 3R2/2 + 4#R/(pR) = 0. From here, with allowance for 

/~. = 0 we have the expression pRaR~) = 64#2R0(b~ ~ - 1)2/p; with this expression substituted into (6) and 
with allowance for (t0), we obtain the condition of bubble growth in a high-viscosity liquid: 

T1 Tl 

P+(ao-kS){1-exP[coT(~a~o_f).])/b~bexp(-~---~)dt~161~---~2[b1/2-1)2-b2#/bb2dt.  (24) pR~) ~ o* 
0 o 

Tlmrefore, setting tim initial physical parameters of a liquid sample and the parameters of a loading SW, 
one can find ~1 by formula (20) and calculate the negative-pressure relaxation time To in the medium to be 
examined by means of relation (5.5) in [15]. Further, with allowance for To and the value of R0 from (22) or 
(24), which was calculated from (23), for given SW parameters, the limiting radius of the growing bubble R.  
is determined or, vice versa, the desired parameters of the loading SW are found by means of R.. 

A qualitative analysis of inequalities (21), (22), and (24) shows the following. The greater the SW 
time constant r, the greater the wave amplitude for the cavitation-development condition to be fulfilled, 
which is in agreement with experimental results [12]. When the sample is loaded by a stepwise SW, we have 
SW7 --+ co, and the left side of the above inequalities tends to zero. In this case, cavitation that is due to 
the elastic energy stored in the medimn in tim pulse mode cannot occur. With decrease in r, the amplitude 
P+ necessary for fulfilling the conditions of the inequalities decreases: however, if r << coCo 1 , the cavitation 
development zone in the sample is of a local nature. Therefore, the case where r ~- aoCo 1 and the appropriate 
condition (21), (22), or (24) is satisfied is optimal for cavitation. 
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In low-viscosity liquids, we have To < 10 -7 sec and, according to the estimate by (3), the nucleus 

radius increases by less than one order of magni tude  for this time even at I/5il ~ 109 Pa. At the subsequent 
stage of inertial bubble expansion, the radius can reach 10 -2 cm only in the case I/5/I > 109 Pa. The  growth of 
bubbles to appreciable sizes, which is observed experimentally in low-viscosity liquids for P +  << 109 Pa, and 

their consequent growth occurs during T2, which is 3 or 4 orders greater than the value of To. The  mechanism 
of formation of unbounded bubble cavitation in low-viscosity liquids consists of the following. It is known 
that  any, including volumetric, deformation of liquids is accompanied by flow of the medium owing not only 
to bubble expansion, but  primarily owing to the conversion of a portion of the SW energy to the kinetic 
energy of a divergent flow, which is caused by the displacement of the free surface. Obviously, this flow has a 
velocity gradient in the unloading zone. Therefore,  a prolonged (compared to To) expansion of the medium, 
which compensates for the hydrostatic counter  pressure, forms during the process of flow, thus reducing the 
energy consumption for bubble expansion. As a result, at the stage of t > T1 the bubbles expand under the 
action of an additional negative pressure - P i  applied to the liquid, rather than in the pure inertial mode. 
As is known from [9, 10, 13], the cavitational nucleus loses equilibrium and begins to grow unboundedly if a 
constant pressure with an amplitude smaller than  a certain critical value for this value of R00 = Rcr is applied 
to the medium. The  viscosity can influence the bubble state through dissipation of the kinetic energy of the 
surrounding liquid only during the time variat ion of its radius. Therefore, if a bubble remains in equilibrium 
in a lowJciscosity liquid at a given pressure, the more so it ceases to grow at tiffs pressure in a high-viscosity 

liquid. 
With  allowance for the aforesaid, an intense cavitation that  is characterized by values of the bubble 

radii not smaller than  a certain specified R ~ can develop in a sample of low-viscosity liquid upon its shock-wave 

loading in two cases: 
- -  The SW parameters  P+ and T satisfy the bubble-growth condition (22) at the stage where 0 ~< t ~< :/"2 

to R . />  R~ 
- -  According to condition (22), the SW parameters  P+  and r correspond, at the stage where 0 <~ t ~< T2, 

to the moment where the bubbles reach the sizes R.  7> R~r, where Rcr corresponds, according to [9, 10]), 
to the unbounded bubble growth in a given negative-pressure field, which is due to a velocity-gradient flow 

behind the mobile free surface of a liquid. 
In the case of a high-viscosity liquid, according to (24) the energy dissipation increases proportionally 

to #2. Therefore, according to (23), even for b0 = 100 and R00 = 10 -4 cm and a very high expansion rate/~0 
(for example, of the order of 10 '~ cm/sec) a bubble in glycerin increases no more than fivefold at the stage 
of inertial extension. Thus, in practice, a noticeable bubble size cannot be reached upon pulse expansion of 
glycerin owing to loading by a real SW, which was observed in earlier experiments [4, 5]. Slow fornmtion of 
a bubble suspension does not occur either, since the negative pressure caused by a gradient flow behind the 
mobile free surface and the bubble sizes R . ,  according to [9, 10, 13], do not satisfy the condition of their slow 

growth. 
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